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Abstract

In this paper we introduce simple classifiers as an example of how to use the data dependent
hypothesis class framework in (Cannon, Ettinger, Hush, & Scovel, 2002a) to explore the per-
formance/computation trade—off in the classifier design problem. We demonstrate that simple
classifiers have many remarkable properties. For example they possess computationally effi-
cient learning algorithms with favorable bounds on estimation error, admit kernel mappings,
are particularly well suited to boosting, and are fully parallelizable. In addition they are robust
to the choice of learning problem which we demonstrate with the error minimization, Neyman-—
Pearson and min—max problems. Our experiments with synthetic and real data suggest that
simple classifiers are competitive with powerful alternative methods.
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1 Introduction

Consider the standard machine learning framework built around the Vapnik—Chervonenkis
(VC) theory (Vapnik, 1998) and its treatment of the well known error minimization problem
where we seek a classifier that minimizes the expected classification error. This framework
provides performance guarantees for classifiers designed through empirical error minimization,
but empirical error minimization is computationally hard for most nontrivial hypothesis classes.
On the other hand restriction to trivial hypothesis classes alleviates the computational difficul-
ties but does not provide good performance. These two extremes emphasize the importance of
developing frameworks that facilitate the exploration of more moderate portions of the perfor-
mance/computation space. In (Cannon et al., 2002a) a modification of the standard framework
was introduced that enables this type of exploration in a nontrivial way. It involves an exten-
sion of the VC theory to the case where the hypothesis class depends on the data. In this new
framework classifier design is decomposed into two components: the first is a restriction to a
data dependent subclass of the hypothesis class and the second is empirical error minimization
within that subclass. Exploration of the performance/computation trade—off is then performed
in terms of the choice of data dependent hypothesis class. The study of how this choice affects
performance is decomposed into two terms: estimation error which quantifies that portion of
the error due to finite sample effects and approzrimation error which is the best error achievable
by the data dependent class. To distinguish between hypothesis classes that are data depen-
dent and those that are not we refer to the latter as “traditional classes”. (Cannon et al.,
2002a) introduced and analyzed several elementary examples of data dependent classes that
were shown to fall between the two extremes. These examples motivate the introduction of
simple classes.

We call a data dependent hypothesis class simple if the specific class realized by any given
data set is the polynomial union of linearly ordered hypothesis classes, where a linearly or-
dered class is one whose indicator sets are linearly ordered by subset inclusion. We show how
this definition facilitates the development of bounds on estimation error and computation. It
also appears to facilitate the discovery of classes which are expressive enough to have good
approximation error in practice. For example, for each pair of points from the training set
consider the class of linear classifiers defined by all hyperplanes orthogonal to the difference
between the pair. We define the linear point-to—point (LPP) class to be the union of these
classes over all such pairs. This simple class has some remarkable properties. For example, in
contrast to the intractability of empirical error minimization over traditional linear classifiers,
we derive a low order polynomial time algorithm for empirical error minimization over LPP.
This algorithm is simple, numerically robust, fully parallelizable and has no free parameters. In
addition we obtain bounds on estimation error for LPP that are independent of dimension and
similar in form to those obtained for a traditional class with VC dimension equal to 3. In the
process of proving this result we prove similar bounds on the difference between training and
generalization error which is beneficial when it is important to have an accurate estimate of the
actual performance of the classifier in the absence of a large test set. Because the estimation
error bounds are independent of dimension we are motivated to map to a higher dimensional
space to improve performance, and since LPP classifiers are linear, computations can still be
performed in the original space by employing kernel mappings. This situation is similar to
support vector machines but here we optimize empirical error over a restricted class rather
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than margin over the unrestricted class. In summary, through an elementary construction, we
are able to obtain the simple class LPP which when coupled with empirical error minimization
successfully addresses nearly all the key issues in the classifier design problem.

The outstanding issue is approximation error, which we do not analyze theoretically but
rather through simulations. Our results are consistent with the traditional framework in that
they depend on how well the class is matched to the process generating the data. To demon-
strate the ease with which the simple class framework can address this issue we use elementary
constructions to create four additional simple classes. They all share the property that they
admit computationally efficient algorithms for empirical error minimization. In addition they
admit computationally efficient algorithms for weighted empirical error minimization. This is
important because approximation error can be reduced through boosting which calls for the
production of a base classifier at each round that minimizes a weighted empirical error. For
most nontrivial hypothesis classes minimizing weighted empirical error is computationally in-
tractable but for our five simple classes we show that it is not. Consequently these simple
classes can be used to facilitate bonafide boosting algorithms. Our empirical results demon-
strate that boosting simple classes works well. For example we show that an unboosted simple
class which performs poorly can be boosted to a performance that is comparable to powerful
methods such as support vector machines and random forests.

Although error minimization is the most common learning problem treated in the literature
there are others that are very important in practice. For example, in the Neyman—Pearson
problem we minimize class 0 error while constraining class 1 error below some fixed value. In
the min—max problem the design criterion contains unknown free parameters and the problem
consists of building a classifier which is robust to their future value. This is most commonly
accomplished through the min—max procedure made popular in robust statistics by Huber
(Huber, 1981). In (Cannon, Howse, Hush, & Scovel, 2002b) we analyze learning strategies and
provide bounds on estimation error for both Neyman—Pearson and min—-max over traditional
classes. These learning strategies are computationally intractable for most nontrivial classes
but we demonstrate that for simple classes they are not. Indeed we develop computationally
efficient algorithms and favorable estimation error bounds for both Neyman—Pearson and min—
max for all five simple classes. The ease with which this is accomplished suggests that the
simple class framework is robust to the choice of learning problem.

This paper is outlined as follows. In Section 2 we define data dependent hypothesis classes,
data dependent shatter coefficients and recall the bounds on estimation error obtained in (Can-
non et al., 2002a) for empirical error minimization over data dependent hypothesis classes. In
Section 3 we define the Neyman—Pearson and min—-max learning problems and extend the
results in (Cannon et al., 2002b) to derive bounds on estimation error for data dependent hy-
pothesis classes. In Section 4 we define five simple classes, develop bounds on their shatter
coefficients, show how to incorporate kernels, and develop computationally efficient algorithms
for the error minimization, Neyman-Pearson and min-max learning strategies. In Section 5
we report results for experiments with both synthetic and real data.
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2 Error Minimization over Data Dependent Hypothesis Spaces

Consider a set X, a finite set Y and a probability space Z = X x Y. Let z = (z,y) denote the
corresponding random variable with probability measure P, conditional probability measures
P, and y-marginal probability measure P. Let F denote a class of functions (classifiers)
f:X —Y and let

e(f) =P(f(x) #y)

denote the generalization error of the classifier f. Let e* = infscre(f) denote the best error
achievable in the class F. We further suppose that we collect n independent identically dis-
tributed (i.i.d.) samples (2(1),2(2),..,2(n)) from P and use them to construct an empirical
error function
1 n
e(f) = = D I(F(x() # ().

=1

The work of Vapnik and Chervonenkis (Vapnik & Chervonenkis, 1974) justifies the time
honored learning strategy that chooses f to minimize é ! by establishing the following proba-
bilistic guarantee when ¥ = {0, 1}:

Pn(e(f) —e" >¢) < 8nV(f)e—n62/128, 0

where V(F) is the Vapnik—Chervonenkis dimension of the function class F. For this paper it
is important to note that this result follows from their (Vapnik & Chervonenkis, 1974) bound

P”(igg le(f) = &(f)] > €) < 8nV(Pene/32 )

on error deviance combined with their lemma

e(f) —e* < 2suple(f) - é(f)]. (3)

feF

We refer to (3) as a fundamental lemma because it bounds estimation error in terms of error
deviance thereby transforming results on the convergence of empirical processes to results in
learning theory.

These results are applicable only when the the hypothesis class is chosen before data is
observed. In (Cannon et al., 2002a) it was shown that one could allow the hypothesis class
to depend on the data and still obtain a bound on estimation error similar to (1). Following
(Cannon et al., 2002a) we outline this result now. Let z, denote the n-sample consisting
of individual samples z,(i),7 = 1,..,n. Given an n-sample z,, we consider functions from
a hypothesis space F, which can depend on the n-sample and so is defined by a class F,

Throughout this paper we ignore questions of whether minima or maxima are actually attained. This detail
is easy to include by introducing approximation parameters and approximate minima/maxima but obscures the
presentation.
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of functions on (Z",Z). We define a data dependent class F = {F,} to be a collection of
such classes F,,. Next we define shatter coefficients for data-dependent function classes. Even
though we consider Y other than the binary Y = {0, 1}, for the purposes of this paper we only
need to define the shatter coefficients for {0, 1}-valued function classes.

Definition 2.1. For n < m+k; define N'(2x,, zim, Fp) to be the number of distinct dichotomies
of the m points z,, generated by the function classes F,, where z, = 2z, U 2, and zj, varies
over all subsets 2z, C 2, with kg = n — k1. That is the number of different sets in

Hem ), ooszm(m)y N Ip o f € Faps 2 = 21 U Zigs Zhg C Zm )
We define the shatter coefficients
Sko,m(j:n) = sup N(Zklazmafn)-

ZkqsZm

Elementary considerations show that the function S is monotonically increasing in its two
subscript indices and therefore for any n < n

Note that these shatter coefficients are more general than those in (Cannon et al., 2002a). In
the notation of that paper S, /,,(F) = Spm(Fn)-
In (Cannon et al., 2002a) the following theorem was mentioned.

Theorem 2.1. Let Y = {0,1} and let F be a data-dependent classifier space. Given an
1.0.d. n-sample zy,, let

€, = iuf e(f)

denote the optimal generalization error in the data dependent class F,, and choose f to solve
the learning strategy

min é(f) (5)

fE€Fz,

of minimizing the empirical error over the class F,,. Then for any m > n and €,

1 )—162

Pn(e(f) N 6’2n > 6) < 2Sn,m(‘7:n)€€€_%(%+m

Proof. First utilize the main result from (Cannon et al., 2002a)

Pr( sup [e(f) - ()] > €) < 25 m(Fu)e¥e Gt
f€Fzn

(6)

which bounds the error deviance. Then apply a data dependent version (Cannon et al., 2002a)

?

e(f) —ei, <2 sup le(f) —&(f), (7)

fej:ﬂn

of the fundamental lemma (3), bounding the estimation error in terms of error deviance, to
complete the proof.

¢
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3 Alternative Learning Problems

We return for the moment to the framework where F is a traditional class and describe three
well-known classifier design problems. The first is the error minimization problem

i 8

?g}g e(f) (8)

which was the subject of the previous section. The second is the Neyman—Pearson problem.
Let Y ={0,1} and consider the class conditional errors e; defined by

ei(f) =Pi(f(z) #i), 1 €Y.

The Neyman—Pearson problem is motivated by real world scenarios where it is important that
one of these errors be no greater than some fixed value. For example in fraud detection the
classification system often has no utility unless the false alarm rate (i.e. the rate at which
fraudulent activity is predicted when it is not present) can be kept below a fixed level. In the
Neyman—Pearson problem we impose this type of constraint on one of the errors and optimize
the other. The version of the Neyman-Pearson problem we treat here is (e.g. see (Van-Trees,
1968))

minfol eO(f) (9)
where Fi={f:feFelf) <a}

The third problem we consider is the min—maz problem. This problem is motivated by real
world scenarios where the error e is defined in terms of an unknown parameter g and we wish
to design a classifier that is robust to its value. In the min-max problem the classifier is
determined by solving

minmaxe(f, q). (10)
A common example is where Y = {0,1} and the unknown parameter is the class marginal
g = P(y = 0). By unknown we mean that P(y = 0) is not known ahead of time nor do we
get information about it in the sample data. This situation can occur either because the value
of the class marginal may change in the future or because the sample data is gathered in such
a way that the number of samples from each class are not determined by the random process
generating the data.

For each of these three problems we can formulate learning strategies which specify how to
select a classifier f given an n-sample z,. For example, for the error minimization problem it
is common to choose f to solve the learning strategy

min é(f) (11)

fer

of minimizing the the empirical error determined by the n-sample z,. Regardless of the strategy,
a standard benchmark for its performance is the estimation error. For the error minimization
problem the estimation error is

e(f) —e* (12)
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where e* = infscr e(f). For the min-max problem we define

s , 13
e ;Ig}lr;leage(f q) (13)

and then define the estimation error to be

~

max e —e". 14
macel( ) (149)
For the Neyman-Pearson problem it is not so clear how to proceed. We propose that a reason-
able definition for the estimation error is the 2-tuple

(eo(f) = min eo(f),er(f) — a). (15)

f€.7:1

In (Cannon et al., 2002b) it was shown how to formulate learning strategies for both the
Neyman-Pearson problem and the min—max problem for which bounds on estimation error
could be obtained. This was accomplished by combining the development of fundamental
lemmas that bound estimation error in terms of error deviance for these strategies (similar to
(3) for the error minimization strategy) with bounds on error deviance (such as the VC theorem
(2)). Here we extend these results to data dependent hypothesis spaces. To this end, observe
that in (Cannon et al., 2002a) it was noted that the data dependent fundamental lemma (7) for
empirical error minimization follows easily from the proof of the data in-dependent fundamental
lemma (3). In much the same way the data dependent versions of the fundamental lemmas
for both the Neyman-Pearson and the min—max problem follow from the proofs of the data in-
dependent versions found in (Cannon et al., 2002b). If we combine these fundamental lemmas
with the bounds (6) on error deviance we can obtain bounds on estimation error for both the
Neyman-Pearson problem and min-max problem utilizing these learning strategies over data
dependent hypothesis spaces. These bounds depend on the sample plan, i.e. the method used
to gather training data. In the theorems below we provide estimation error bounds for both
problems assuming a retrospective sample plan where ny > 0 samples are drawn .i.d. from Py,
n1 > 0 samples are drawn 4.¢.d. from P71, and ng + n; = n. Bounds for the Neyman-Pearson
problem can also be obtained for the sample plan where n samples are drawn ¢.7.d. from P, but
we do not present them here. The estimation error bound for the Neyman-Pearson problem is
the following.

Theorem 3.1. Consider the retrospective sample plan where we choose ng > 0 samples with
y =0 e.i.d. from Py and ny > 0 samples with y = 1 i.i.d. from Py where n = ng + ny. Denote
the distribution for this plan Ps = Py°Pi*. Given an n-sample zy, collected according to this
sample plan, let

es,zn = minfefl,zn 6’[](f)

(16)
where Fiow =1f:fE€F.ea(f) < a}

denote the Neyman-Pearson value for the data dependent class F at z,. Also define the em-
pirical class errors to be

)= S I 0) £9) a7)

Jiyn(j)=t
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Choose €1 > 0 and then choose f to solve the learning strategqy

min

rer.. eolf)

N (18)
where Fi., ={f:feF..,ea(f) <a+e/2}

Then for any ey > 0,
P5<(eg(f) —eazn > 60) or (el(f) > a—)—el)) <

65 on(Fn) (e "0 D/S + e7mel)%).

Proof. The fundamental lemma for the Neyman-Pearson problem (Lemma 1 in (Cannon et al.,
2002b)) can be easily extended to its data dependent version providing a data dependent version
of Corollary 1 from (Cannon et al., 2002b). That is

Ps((eo(f) —6’67% > 60) or (el(f) > a—)—61)> <

Ps( sup leo(f) = éo()] > e0/2) +Ps( sup les(f) = éx(f)] > e1/2)-

fe}—zn fe}—zn

Consider the first term on the righthand side. With z,, fixed, F,, = ]—'Zno,znl is a 2y, dependent
class so that we can generalize Theorem 3 from (Cannon et al., 2002a) (6) to the class errors
and obtain

,P(?()( Sllp |€0(f) - éU(f)| > 60/2) S 28”0,2710(-7:”)66067”063/8‘
f€Fzn

Since Ps = Py°P;" and the supremum with respect to the z,, variable is utilized in the
definition of the shatter coefficients we obtain

735( sup |eo(f) — éo(f)| > E0/2> < 2Sp, 2n0(fn)6€°6_n°63/8
fE€EFu '

with a similar statement for the term Pg (SqueFm le1(f) —ér(f)] > 61/2). Consequently

Ps((eo(f) —6’67% > 60) or (el(f) > a—)—61)> <

28n072n0 (fn)efoefnofg/s + 2Sn1,2n1 (j:n)eq efnle%/S‘

We now use ef < 3 and the inequality (4) to finish the proof. ¢

Our next theorem gives a bound on estimation error for the min-max problem for multiclass
classification when the unknown ¢ is the class marginals.
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Theorem 3.2. Let Y be a finite set with |Y| = M and let Q be the space of all probability
measures on Y. Consider a data dependent function class F of Y -valued functions and let
Fi i €Y denote the data dependent classes of binary functions i or not i derived from F in
the natural way. Consider the case where the free parameters q € Q) in

e(frq) = 3 el a

i

are the Y marginals. Consider a retrospective sample plan S of size n with n; > 0 samples
drawn i.i.d. from P; and Y ;n; = n. Denote the probability measure for this sample plan Ps.
Given an n-sample z,, let

e! = min maxe(f, 19
L, = i maxe(/.q) (19

denote the min—maz value for the data dependent class F at z, and choose f to solve the
learning strategy

. 5
Auin max & (f) (20)

with the empirical class errors é; defined in (17). Then for any q € Q,

Ps (e(f, g —et > e) < 6M max Sy 00 (). (21)

Proof. The fundamental lemma for the the min-max problem( Lemma 3 in (Cannon et al.,
2002b)) can be easily extended to its data dependent version providing a data dependent
version of Corollary 2 of (Cannon et al., 2002b). That is

Ps(e(f.a) —et, > ¢) <Ps(_swp le(f.q) = e(f,0)] > e/2).

fE€Fn 4€Q

Since

suple(f,q) — é(f,q)| < suple;(f) — é&(f)]
q€Q 1S

we can apply the union bound followed by the data dependent bound (6) on the error deviance
applied to the class errors and utilize the above definitions of shatter coefficients to obtain

Ps (e(f’ q) a ezn > 6) < 2Me* mai/)'( Sni,2ni (f':f;)e*nié/g‘
e

Application of e < 3 and the inequality (4) finishes the proof. ¢
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4 Examples of Simple Classifiers

In this section we analyze five data dependent hypothesis classes that are representative of data
dependent hypothesis classes that we call simple classes. Three of the five are restrictions of
traditional linear classifiers and two are restrictions of traditional spherical classifiers. Two of
the five classes are shown to possess shatter coefficient bounds that are independent of dimen-
sion (establishing a tight bound for the other three is an open problem). For computational
considerations we let X = R? with the usual inner product (-,-) and metric || - ||. In all five
cases we present polynomial-time algorithms for all three empirical problems in (5), (18) and
(20).

Recall that z, = (2,,y,) and let Z,, = {¢} be a finite set of representation points & € RY
determined by a representation set rule applied to an n—sample z,. Each of our simple classes
takes the form

TZn = {f : f(x) = H(s(g(x,f) - b))v s € {_171}7 beR, € EZn} (22)

where H(a) = { ] if a>0 s the heaviside function and g(-, ) is the structure function determin-
ing the type of classifier (i.e. linear or spherical). A total of five simple classes are obtained by
employing two structure functions, one with three representation set rules and the other with
two. The two options for g are the linear structure function g(z,¢) = (z,¢ ), and the spherical
structure function g(z,¢) = ||l — £||. The five simple classes are determined by (22) and the
five data dependency rules that follow.

1. The linear point-to—point (LPP) data dependency rule is defined by the linear structure
function and the representation set rule

Eu ={&:{=2n(i) —mp(4), 1 <i<j<n} (23a)

2. The linear point-to—centroid (LPC) data dependency rule is defined by the linear structure
function and the representation set rule

B ={{:&=an(i) — pn, 1 <1 <t (23b)

where
1 n
1=

3. The linear centroid-to—centroid (LCC) data dependency rule is defined by the linear
structure function and the representation set rule

B, = {& 1= Hng — :“nl}v (23C)
where
1 N
— Z xn(j) ifn; >0,
P =" )= 1=0,1.
0 if n; = 0,
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4. The sphere about a point (SP) data dependency rule is defined by the spherical structure
function and the representation set rule

S, = {€: €= a,(i), 1 <i<n}. (23d)

5. The sphere about the centroid (SC) data dependency rule is defined by the spherical
structure function and the representation set rule

Bz, ={&: &= pal, (23e)

where
1 n
1=

We use the same five acronyms LPP, LPC, LCC, SP and SC to refer to the simple classes
defined by these rules.

When a data dependent class F is obtained by restricting a traditional class § then
Spon(Fn) < (20)VC® 4 1.

Consequently(see (Devroye, Gyorfi, & Lugosi, 1996)), for the linear classes LPP, LPC, and
LCC we have

Sn2n(Fa) < (20)"1 41
and for the spherical classes SP, and SC we have
Spon(Fn) < (20)72 + 1.

These bounds may be very loose. Indeed, in (Cannon et al., 2002a) it was shown that the
shatter coefficients for the LPP and SP classes satisfy Sy, 2, (F,) < 8n°—2n and S, 2,(F,) < 4n?
respectively, both of which are independent of dimension. Although the LPC, LCC, and SC
classes appear to be less complex, establishing a tight bound on their shatter coefficients is
currently an open problem.

It is interesting to note that for LPP and SP the shatter coefficient satisfies (see (Cannon
et al., 2002a), p. 348)

Snon(Fn) < (20)VOF) 41
where V Cs, (F) is the data dependent V' C' dimension of order 2n and is defined as

VCon(F) = max n.

{n:3 2,Cz2p : F shatters zn }

Z2n

In words, VU, (F) is the size of the largest subset of some 2n points which is shattered by
the data dependent class on those 2n points. When the data dependent class F is obtained by
restricting a traditional class § then V Cs,(F) will be less than or equal to the VC dimension
VC(3).

10
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We now describe a simple polynomial time algorithm that optimizes all three empirical
problems in (5), (18) and (20) over all five data dependent classes in (23). Because we will
be interested in boosting these classifiers we describe a more general algorithm that optimizes
generalizations of these three problems in which each of the n data points z,(i) is given some
positive weight wy, (7). The empirical weighted class error, which is a generalization of (17), is
given by

éi(f) = — | > .wn(j) I(f(=n(j)) # i) (24)

where wy(i) > 0, V ¢ = 1,...,n. This definition of éy and é; is used in (5), (18) and
(20) to define the empirical weighted error, empirical weighted Neyman-Pearson and empirical
weighted min-max problems. Note that defining w, (i) =1, V i =1,...,n gives the standard
unweighted problems.

The algorithm we describe optimizes over the set of triplets (£,s,b) € E, x {-1,1} xR
which parameterizes all five data dependent classes. Therefore we adopt the notation é;(¢, s, b)
for the empirical weighted class error of the function f € F, parameterized by (£,s,b). All
three empirical problems in (5), (18) and (20) can be solved as minimization problems of the
form 2

IgnsHblL(éU(fa S, b)v é1 (&7 S, b))

where the loss function L is defined by

L(ag,a1) = (@> ap + (E) ap for error minimization, (25a)
n n
< 2
L(ag,a1) = 0, M= a‘—i— @/ for Neyman-Pearson and (25b)
0o, otherwise
L(ag,a1) = max (ag, a1) for min-max. (25¢)

We use the property ming ;;, = ming ming, to decompose the algorithm into a loop that mini-
mizes over the finite set 2, and a computation inside the loop that minimizes over the infinite
set {—1,1} x R This is shown in Algorithm 1 which computes the representation set =,
and then loops over all representation points, calling the MinThresholdSign routine on line 7
to solve the optimization problem min, L(ég(f, s,b),é1(&, s, b)) for each representation point.
The MinThresholdSign routine returns a solution (s¢, b¢) and the value I¢ of the loss function
at that solution, and lines 8-10 track a globally optimal solution.

To develop the algorithm for the MinThresholdSign routine let ¢ be fixed and define the
discriminant values

vn(]) = g(mn(])af)v J=1..n (26)
so that
f(xn(4)) = H(s(vn(]) - b))

2Since each of the five data dependent classes contains at least one function that correctly classifies all class
1 samples there is always a feasible solution to the Neyman-Pearson problem in (18).

11
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Algorithm 1 Learning Algorithm for Simple Classifiers
INPUTS: z,, wn,L
OUTPUTS: (&*,b*, s¥)

Initialize [* = oo and (¢*, s*,b0*) = (0, 1,0).
E,, < ComputeRepresentationSet (z,)
for all{ € =, do
(lg, S¢, bg) — MinThresholdSign(L, &, 2n, wn)
if (I¢ <1*) then
(l*a f*a 3*7 b*) — (lf’ fa 8¢, bf)
end if
: end for

e e
@ 22

: return {(£*,b*,s*)}

When ¢ is fixed and s = 1 the family of indicator sets X (b) = {zn(j) : f(21(j)) = H(va(j)—b) =
1} is linearly ordered by subset inclusion which means that the weighted empirical errors éy and
é1 are monotonic in b. This linear ordering also means that there are at most n + 1 indicator
sets (including the empty set) and therefore the error pair (éy,é;1), and consequently each loss
function in (25), takes on at most n + 1 distinct values. Indeed, if K < n + 1 is the number
of distinct discriminant values and we let v'(1) < v'(2) < ... < v/(K) be the ordered list of
these values, then the number of sets is equal to K + 1 and they are witnessed by any set
{bo, b1, ..., bx } whose members satisfy

by € [v'(k),v'(k+1)), k=0,1,...K (27)

where we define v'(0) = —oo and v'(K + 1) = oco. The same is true when s = —1 except that
the members of {bg, by, ..., bx } must satisfy

by € (v'(k),v"(k+1)], k=0,1,..,.K (28)

which differ from (27) only at the boundaries. Now let § > 0 and define v'(0) = v'(1) — ¢ and
V(K +1) =v'(K) + ¢ so that the specific set {bg, b1, ...,bx } with members

V' (k) + o' (k + 1)
2

satisfies both (27) and (28). With this set the problem min,j L(éo(&, s,b),é1(¢,s,b)) can be
solved by determining a member of {—1,1} x {bg,b1,...,bx} with the minimum loss value.
We develop an efficient algorithm for computing the loss values for all members of this set by
exploiting the property that éy and é; are monotonic in b . Specifically, once the value of é;
has been computed for (s, b;) this property allows us to compute the value for (s,bgy1) with
a single addition. Our algorithm also exploits the fact that once é; has been determined for
s = 1 its value for s = —1 is simply ¢; — é;, where ¢; = n% > jiyn(j)—i Wn (7). Thus, once the
values of éy and é; have been initialized for (s,b) = (1, bg) it is a simple matter to step through
all the members of {—1,1} x {bg,b1,...,bx } in order, updating é; and é; and computing the
loss values using (25) as we go.

by, =
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The complete MinThresholdSign routine is illustrated in Algorithm 2. The values ¢y and
c1 which are used to compute weighted empirical errors for s = —1 from weighted empirical
errors for s = 1 are computed on line 4. Lines 6-8 compute the discriminant values v, and line
10 produces a sorted index list o for the discriminant values, i.e. o is such that v,(o(j)) <
vp(o(j + 1)), j =1,....,n — 1. Lines 13-33 compute loss values for all members of {—1,1} x
{bo,b1,...,bx} and save a pair (s¢, be) with the smallest loss value l¢. The starting point
(s,b) = (1, v,(o(1)) — 0), its weighted empirical error values éy and é;, and corresponding loss
value are determined on lines 13-14. Lines 15-17 treat the case where the initial b value is
paired with s = —1. Then the loop in lines 19-33 steps through the remaining values of (s, b),
updating the weighted empirical error values on lines 21-22, and computing and tracking the
smallest loss on lines 24-31. Because v, may contain repeated discriminant values we employ
the “if” statement on line 24 to ensure that only values of b from the set {bg,b1,...,bx} (i.e.
values fall between distinct discriminant values) are considered.

The overall run time of Algorithm 1 is O(TCRS + |Ezn|TMTs) where Togs is the run time
of the ComputeRepresentationSet routine, Ty;rg is the run time of the MinThresholdSign
routine, and

(2*n  Lpp

n, LPC

=] <<, LCC
n, SP
1, sc

from (23). The ComputeRepresentationSet routine requires Tors = n2d time for the LPP
class, Tors = nd time for LPC, LCC and SC and T¢rs = 0 time for SP. The MinThresholdSign
requires O(n) time 3 to compute ¢y and ¢; on line 4, a time Tprgc to compute the discriminant
values on lines 6-8, O(nlogn) time to perform the sort on line 10 and ©(n) time to step through
the values of (s,b) in lines 13-33. Since both the linear and the spherical structure functions
can be written in terms of inner products of vectors in R?, the computational requirements
for lines 6-8 are Tprsc = O(nd). Thus, the run time of the MinThresholdSign routine is
O(nd 4+ nlogn). Now, since the inequality Tors < |E.,|Tamrs holds for all five classes, the
overall run time of Algorithm 1 is

O(|2.,|(nd + nlogn)).

Thus, for the five data dependent classes in (23) the run time is at most O(n® max(d,logn))
and at best O(n max(d,logn)).

It is worth mentioning that the n2d storage requirements for =, for the LPP class can be
avoided by simply computing the representation point ¢ as needed inside the loop in Algorithm
1. This is easily accomplished without increasing the run time. It is also worth mentioning
that it is more efficient to move the computation of ¢y and ¢; from the MinThresholdSign
routine to the initialization step on line 4 in Algorithm 1. Finally, our experience has shown
that the set of triplets Z, x {—1,1} x {bg,b1,...,bx } visited by Algorithm 1 often contains
more than one member that minimizes the loss. Let # be the subset of optimal triplets for a

3The notation 7 = ©(a) means that 7 is bounded above and below by a linear function of a.
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Algorithm 2 MinThresholdSign: This routine solves the optimization problem
min, , L(eg(&,5,b),€1(&,s,0)) and returns a solution (s¢, be) and the value I¢ of the loss function
at that solution.

1. INPUTS: L,&, 2y = (zn, Yn), Wy
OUTPUTS: (lg, bg, 85)

&0 4 115 Z (o0 wad): €1+ 5t ()21 wn ()

for j=1tondo
on(4) = g(zn(5),€)

end for

—
@

o < AscendingSort (v,)
:Set o(n+1) «n+1and vy(n+1) =v,(c(n)) + § for some small § > 0.

[ S G

: é() < Cp, é1 <0
. (g, se.be) < (L(éo,€1), 1, vp(o(1)) — )
- if (L(CO — ép,c1 — él) < lg) then

— =
[SARN

16 (lg,s¢,be) < (L(co — €p,c1 — €1), — 1, vy(o(1)) — 9)
17: end if

18:

19: for j =1 to n do

20: '

2 dy b0 — Iya(o(j)) = 0) (12l2id)

2 e e+ Inlo(f) = 1) (“i2)

n1
23:

24:  if (vn(0(4)) # vn(o(j +1))) then

2. if (L(éo,é1) <l¢) then

26: (le, sg,be) < (L(éo,él), 1, (vn(o(j))+gn(a(j+1))>>

27: end if

28: if (L(co— ép,c1 —é1) <l¢) then

29: (lg, sg,be) (L(Co —ép,c1 —€1), —1, (Un(a(j))+12)n(a(j+1))>>
30: end if

31:  end if

32:

33: end for

34:

35: return {(l¢,be, s¢)}

given problem instance. Algorithm 1 chooses from this set by simply keeping the first one it
sees. However we may wish to choose differently. For example it may be more robust to choose
randomly from 6. Alternatively we may wish to choose a solution that optimizes a criterion
based on margin. These choices can be implemented with negligible computational cost.
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Algorithm 1 has many attractive properties. First, it exactly minimizes the empirical error
in a finite number of steps. Second, it uses only multiplications, additions and comparisons and
is therefore likely to be more robust to finite precision computations than than other learning
algorithms that employ operations such as division, linear solvers, and iterative solvers. Third,
it has no free parameters for the user to specify and analyze. This algorithm is also trivial to
parallelize by partitioning =, into ¢ sets, each of size roughly E%;”‘, where ¢ is the number of
processors, and then running Algorithm 1 on each partition in parallel. Results of the parallel
runs are coalesced by a ©(q) algorithm to determine a global optimum.

We turn now to the design and implementation of simple kernel classifiers. Let ¢ : X — X
be a map with a kernel K (x1,22) such that {¢(x1),¢p(x2)) = K(x1,x2), where the dimension
d of X may be much larger than d. Since both the linear and spherical structure functions
g(z,8) = (x,&) and g(x,£) = |z — £|| can be expressed in terms of inner products it is
straightforward to implement simple classifiers in the mapped space X without having to
compute in X by using the kernel to compute inner products. Algorithm 1 is easily modified
to accommodate these classifiers. Representation points are represented implicitly, i.e. by the
data samples from z, that determine them, so the explicit computation of the representation
set 2, on line 5 is omitted. The main loop iterates over all representations and computation
of the discriminant values on line 7 of Algorithm 2 must be modified as shown below

LPP: with ¢ = ¢(z(i1)) — (2 (ia)),

LPC: with & = ¢(2,,(i)) — fin,

0ai) = K(on(i)on(@®) = =3 K(@a(j), 2n(l))

n
=t
v(5)
LCC: with £ = fin, — fin,,
1 ) 1
wi) = 3 K@al)m®) — o 3 K@a(i)ea)
0 Lyn(1)=0 Ly ()=1
70‘(rj) 7;('1)

SP:  with & = ¢z (i),
va(7) = VE (@0 () 20(5) = 2K (20 (5), 20 (i) + K (20(3), 2,(0))

SC:  with £ = [y,

l1=112=1

o) = K@) @) = 2 - S K@) @n®) + 5 37 3 K@alh), wallz)
=1

/

N~

7() 72

where fip,, fin, and fi,, are centroids of the mapped data. Let x be the number of computations
required to perform a kernel evaluation. Then the time required to compute all n discriminant
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values using the formulas above is ©(nx) for LPP and SP, ©(n? k) for LPC and LCC, and
O(n3 k) for SC. This is in contrast to the nd time reported for the non—kernelized algorithm.
However, by computing the quantities y(7),v(7),71(j),7 = 1,...,n and 2 (as needed) at the
initialization step on line 4 of Algorithm 1 we can reduce the time required to compute the
discriminant values in Algorithm 2 to nx. With these modifications the kernelized version
of Algorithm 1 has run time O(|Z,, |(nk + nlogn)), except for the SC class whose run time
is now O(n?k) because it is dominated by the computation of v, during the initialization
step. Note that the run time of the kernelized algorithm can be reduced to O(|Z,, |n logn)
for the LPP, LPC and SP classes by initially computing the array M whose elements are

M;; = K(zn(i),2n(4)) V 1 <i < j <n at the cost of ©(n?) in additional storage.

Algorithm 1 also has some very attractive properties when coupled with boosting. Recall
that boosting is a procedure that, given a training set, produces an overall classifier that is a
weighted majority vote of classifiers from a base hypothesis class. Since boosting is a procedure
that is employed after we see the data it is unchanged by the utilization of a data dependent
base hypothesis class as long as this class is the same for each round of boosting. Most boosting
strategies call for the determination of a base classifier at each round that minimizes a weighted
empirical error. However, most classifier design algorithms used in practice do not minimize
empirical error because it is computationally intractable for the function classes they consider
(e.g., traditional linear classifiers), and so satisfaction of this objective is rarely guaranteed. On
the other hand, Algorithm 1 is guaranteed to minimize weighted empirical error when boosting
the simple classifiers in (23). In addition, the run time for all boosting rounds after the first
can be improved by saving information computed during the first round. In successive rounds
of boosting Algorithm 1 is invoked with the same data z, but different weights w,. Thus
by saving the discriminant values v, and the sorted index list o computed on lines 6-11 of
Algorithm 2 for each £ during the first boosting round we can avoid these computations on
future rounds. This reduces the run time to O(|Z,, |n) for each boosting round after the first.
This run time speed—up requires an additional storage of ©(|=,, |n).

5 Experimental Results

The development of practical methods for classifier design involves a trade—off between com-
putation, estimation error and approximation error. In the previous section we developed
an algorithm that implements a computationally efficient learning strategy for three learning
problems (error minimization, Neyman—Pearson and min-max) over five simple classes: LPP,
LPC, LCC, SP and SC. The shatter coefficient bounds for these learning strategies give rise
to favorable estimation error bounds in all fives cases, particularly for the LPP and SP classes
where the bound is independent of dimension. Indeed, in this section we demonstrate that
these learning strategies are highly resistant to overfitting, even when the dimension is high
and the sample size is small. The advantages of computational efficiency and favorable estima-
tion error must be balanced against a possible sacrifice in approximation error. In principle, in
the data dependent hypothesis framework, approximation error is controlled through the choice
of data dependency. Ideally this choice is based on first principles knowledge of the problem
at hand. However, in this paper we have no specific problem in mind so we have chosen five
data dependencies that illustrate the flexibility and diversity of this approach and we test their
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performance on both synthetic and real data sets.

An appealing characteristic of the learning strategies for the five basic classes is that they
contain no free parameters. Employing a kernel map however, adds one free parameter (i.e.
the choice of kernel) and boosting adds another (i.e. the number of boosting rounds). Employ-
ing a kernel map is attractive in that it results in a very minor change in the computational
requirements, and does not affect the estimation error bounds for the LPP and SP classes.
On the other hand boosting increases the computational requirements and may also increase
the estimation error. Nevertheless the overall computational requirements for boosting remain
practical and empirical studies have suggested that it can be very effective at reducing ap-
proximation error without overfitting (Schapire, Freund, Bartlett, & Lee, 1998). In addition
these simple classes possess special properties (described in the previous section) that make
them particularly well suited to boosting. Our current application of boosting is limited to the
error minimization problem since we know of no boosting strategy for the Neyman—Pearson or
min—max problems.

5.1 Synthetic Data

Our first set of experiments are performed on synthetic data generated from Gaussian distribu-
tions where we can compute the optimal classifiers and the values for the error minimization,
Neyman-Pearson, and min-max problems in (8), (9) and (10). Each of these three problems
possesses a generalization value p(f) when evaluated at a particular classifier f. For the error
minimization problem pu(f) = e(f), for the Neyman-Pearson problem we choose the two—tuple
w(f) = (eo(f),e1(f)), and for the min-max problem p(f) = max;e;(f). We refer to the
generalization value at the optimal measurable classifier as the Bayes’ value p*. In our ex-
periments we report estimates of the average generalization value Es[u(f)] = [ u(f)dPs of
the learning strategy, where the average is over all training sets of a given size n generated
according to the sampling plan S. We employ the i.i.d. sample plan for the error minimiza-
tion problem (where n samples are drawn independent and identically distributed from P)
and the retrospective sample plan for the Neyman-Pearson and min-max problems (where
ng > 0 samples are drawn i.i.d. from Py, ny > 0 samples are drawn i.i.d. from Pj, and
no + n1 = n). In addition, for the min-max problem we report estimates of the average error
Esle(f,q)] = qEsleo(f)]+ (1 —q)Es[e1(f)] achieved by the learning strategy as the future class
marginal ¢ = P(y = 0) ranges from 0 to 1.

We compare our simple classifier learning strategies with the Gaussian Maximum Likeli-
hood (GML) learning strategy (e.g. see (Fukunaga, 1990)). We choose GML because it has
similar computational requirements and is one of the few alternative learning strategies that
accommodates all three learning problems in a natural way. In addition it is a time honored
method whose generalization properties are well known, particularly for the problem instances
we have chosen for our experiments. Indeed, we expect the GML learning strategy to perform
well in these experiments because it exploits the knowledge that the conditional class distribu-
tions are Gaussian. With this knowledge the optimal classifier for all three learning problems
can be expressed as a quadratic classifier of the form

H (= m1) Sy M = ma) = (2= mo) - gz = mo) + I (|$a]/]So]) + 7) (29)
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where the m; and 3; are the conditional class means and covariances and the threshold 7
is chosen so that 7 = 2In(P(y = 1)/P(y = 0)) for error minimization, e; = « for Neyman-
Pearson and eg = e; for min—-max. The GML learning strategy produces a quadratic classifier by
computing maximum likelihood estimates of m;, 3;, substituting them into (29), and then using
maximum likelihood estimates of P(y = ¢) to determine 7 for error minimization, and empirical
error estimates of e; to determine 7 for the Neyman—Pearson and min—max problems. To make
this strategy complete we must specify its course of action when the estimated covariance
matrices have reduced rank. In addition we would like to be robust to cases where the estimated
covariance matrices are ill-conditioned. We address these concerns by inverting regularized
covariance estimates of the form &; + vI where $3; is the maximum likelihood estimate and
v > 0 is the regularization parameter for our GML strategy. The computational requirements
for this strategy are O(nd? 4 d* + nlogn).

For the error minimization problem we also compare our simple classifier learning strategy
with support vector machines. We choose support vector machines because, like the learning
strategies for LPP and SP, they possess estimation error bounds that are independent of di-
mension (Cristianini & Shawe-Taylor, 2000) and can be solved by a computationally efficient
learning algorithm (e.g. see (Hush & Scovel, 2003)). In particular we employ the soft margin
support vector machine (SVM-SM) described in (Cortes & Vapnik, 1995) with the specific
SV M9t learning algorithm described in (Joachims, 1999). This learning strategy has three
parameters: The kernel function K, the positive real value C' that weights the slack variables
in the SVM—-SM criterion, and a positive real value tol associated with the stopping condition
for the algorithm 4. The run times of SVM-SM algorithms tend to be more variable than the
run times of simple classifier algorithms or GML algorithms. SVM-SM algorithms are often
sensitive to C' (i.e. larger values of C typically lead to longer run times) and the properties of
the data (i.e. less separable data typically leads to longer run times). Although the run time
guarantees for practical SVM-SM algorithms are as high as O(C?n®logn) (Hush & Scovel,
2003), empirical evidence suggests that the run time dependence on n tends to be no higher
than cubic (Campbell & Cristianini, 1999; Joachims, 1999; Williams & Seeger, 2001).

In our synthetic data experiments we set d = 50 and generate data according to probability
distributions on R? x {0, 1} where the class conditional distributions Py and P; are Gaussian.
We perform experiments with two different distributions whose parameters are chosen so that
the Bayes’ value for the error minimization problem is 0.15. Specifically, in the first distribution
the class means are equal 1o = 1 = 0 and the class covariances are different 3y = 1.4677 and
Y1 = I, and in the second distribution the class covariances are equal ¥y = »; = I and the
class means are different py = (0.276)1 and py = 0. Following (Fukunaga, 1990) we refer to
the first distribution as the I—yI distribution and the second as the I-I distribution. For both
distributions the class marginal probabilities are P(y = 0) = 1/3,P(y = 1) = 2/3 for the
error minimization problem (recall that class marginals are not part of the Neyman—Pearson
and min-max problems). The corresponding Bayes’ values for the three design problems are
summarized in Table 1.

Fukunaga (1990) suggests that practical learning strategies should be general enough to
perform well on both of these distributions because in many classification problems the charac-

“The iterative algorithm in (Joachims, 1999) is terminated when the first order necessary conditions for an
optimum are satisfied within a tolerance tol.
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H Error Minimization ‘ Neyman-Pearson (o =0.10) ‘ Min-Max

Bayes’ Value for I—yI 0.150 (0.254, 0.100) 0.171
Bayes’ Value for I-1 0.150 (0.251, 0.100) 0.164

Table 1: Bayes’ values for the synthetic data experiments.

teristic that distinguishes the two classes is some combination of mean difference and covariance
difference. These particular distributions were selected because many learning strategies which
work well on the [—yI distribution do not work well on the I-I distribution and vice versa. He
points out that although the covariance matrices in both these distributions are diagonal, they
are still representative because any two non-diagonal covariance matrices can be simultaneously
diagonalized by a linear transformation provided that at least one of them is positive definite.

When judging the performance of a learning strategy we are interested in the average gen-
eralization value of the learning strategy, where the average is over training sets of a given
size n. We compute unbiased estimates of these average generalization values as follows. For
the error minimization problem the training and test sets described below are generated using
i.i.d. sampling and for the min-max and Neyman-Pearson problems they are generated retro-
spectively with an equal number of samples per class. For each problem (error minimization,
Neyman-Pearson and min-max), and each applicable learning strategy (e.g. LPP, SVM-SM,
GML, boosting, etc.), and each training sample size n = 10, 30, 50, 100, 250, 500 the following
is repeated k£ = 20 times. First, n samples are randomly generated and used to train a classifier
f. Next, the errors e(f), eo(f) and e (f) of the resulting classifier are estimated using a test
set of 50,000 random samples °. Finally, the estimated errors are averaged over the k& = 20
runs to obtain estimates of the average errors Esle(f)], Esleo(f)] and Eslei(f)]. These are
used to report estimates of the average generalization values Es[u(f)] = Es[e(f)] for the error
minimization problem and Es[u(f)] = (Esleo D], Esler(f )]) for the Neyman—Pearson prob-

~ A

lem. The quantity max(eg(f),e1(f)) is averaged over the k& = 20 runs to obtain an estimate
of average generalization value Es[u(f)] = Es[max(eo(f),e1(f))] for the min-max problem.
In addition, the estimates of Es[eg(f)] and Eglei(f)] are used to report the average error
Esle(f,q)] = qEsleo(f)] + (1 — q)Esle1(f)] for the min-max problem. Although the values
we report are “estimates of averages”, for expository purposes we drop the terms estimate and

average and simply refer to them as the errors or generalization values.

We begin with the experimental results for the error minimization problem. The results
for the I-~I distribution are illustrated in Figures 1(a)-1(d). In Figures 1(a)-1(c) the Bayes’
value of e* = 0.15 is shown as a dark dotted line. The generalization values for the three
simple classes, LPP, SP and SC (without kernels or boosting), are plotted as a function of n
in Figure 1(a). The generalization values for the other two linear classes, LPC and LCC, are
similar to LPP so we show only the result for LPP. These results provide a rather dramatic
example of how the choice of data dependency can affect approximation error. On one hand no
linear classifier can perform well on this problem and so any class that is a restriction of linear

5The same test set of 50,000 i.i.d. random samples is used for all error minimization experiments and the
same test set of 50,000 random samples generated retrospectively is used for all min-max and Neyman-Pearson
experiments.

19



LANL Technical Report: LA-UR-03-0193 5 Experimental Results

classifiers will necessarily perform poorly. On the other hand spherical classifiers are perfectly
matched to this problem (since the optimal decision boundary is spherical) and since the SP
and SC classes are restrictions of spherical classifiers it is not surprising that their performance
is superior to LPP. Because the SP and SC classes are different restrictions however, we see a
substantial difference in their generalization values. Since the generalization value for the SC
class very nearly achieves the Bayes’ value for such small training sample sizes we conclude
that this choice of data dependency is particularly well suited to this problem. Indeed, except
for the choice of threshold 7, the learning strategy employed for the SC class on this particular
problem is identical to a GML strategy that exploits knowledge that the covariance matrices are
of the form I and the means are equal. Thus the SC classifier represents a close approximation
to what we might do if such an abundance of first principles knowledge were available.

Figure 1(b) illustrates how the performance of a simple class that is not particularly well
suited to this data distribution can be improved by adding a kernel and boosting. This figure
plots the generalization value as a function of n for LPP, LPP with a Gaussian kernel (LPP-G)
and LPP with Gaussian kernel and 500 rounds of boosting (LPP-GB). The Gaussian kernel
is K (71, 32) = e~ l#1=221*/d and LPP-GB uses the AdaBoost method described in Freund and
Shapire (1997). These results demonstrate that the approximation error can be dramatically
reduced by incorporating kernels and boosting. Indeed the kernel alone improves the perfor-
mance by approximately 10%. Boosting adds another 6% making the performance of LPP-GB
superior to SP.

In Figure 1(c) we compare simple classifiers to some powerful alternative learning strate-
gies. This figure plots the generalization value as a function of n for GML, SVM-SM, SP and
LPP-GB . The regularization parameter for GML was v = 107%. For the support vector
machine we used a Gaussian kernel (same as above) and the default values of C' and tol in
SV Mlight (ie. C =n/ (31" | K(zn(i),2,(i))) and tol = 0.001). The results here are somewhat
surprising! First, the SVM-SM, SP and LPP-GB strategies all perform very well compared to
GML even though they are not explicitly designed to exploit the knowledge that the proba-
bility distributions are Gaussian. Second, the SP and LPP-GB strategies attain much lower
generalization values than SVM-SM for the smaller sample sizes. This demonstrates that by
a suitable choice of data dependency (e.g. SP) or by kernels and boosting (e.g. LPP-GB) the
simple classifier strategy is able to attain generalization values that are superior to some very
powerful alternative methods. It is important to point out that these comparisons would be
much different for larger sample sizes. Indeed, the performance of SVM-SM is already superior
to the simple classes at n» = 500 and for sufficiently large n the performance of GML will
surpass that of the simple classifiers. Nevertheless it is striking that simple classifiers are so
clearly dominant at these smaller sample sizes.

These results are obtained with a simple classifier strategy that is more stable than GML
and SVM-SM. We use the term stable to refer to the sensitivity of the performance of the
learning strategy to changes in the training data. Formal definitions of stability are described
in (Bousquet & Elisseeff, 2002) where they are used to study the performance of support
vector machines. In particular they show how to obtain bounds on the average classifier error
deviance Es||e(f)—é(f)]] as a function of stability so that learning strategies with good stability

6 Although the results for the simple class SC are superior to all others we exclude it from this comparison
because it exploits far more knowledge of the distribution than these other methods.
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Figure 1: This figure summarizes the experimental results for the error minimization problem
with the I—vI distribution. Figure 1(a) plots the generalization values for the simple
classes LPP, SP and SC. Figure 1(b) plots the generalization values for LPP, LPP

with Gaussian kernel (LPP-G) and LPP

with Gaussian kernel and 500 rounds of

boosting (LPP-GB). Figure 1(c) plots the generalization values for GML, SVM-SM
with Gaussian kernel (SVM-G), SP and LPP-GB. In Figures 1(a)-1(c) the Bayes’
value of e* = 0.15 is shown as a dark dotted line. Figure 1(d) plots the error deviance
Es[le(f) — é(f)|] for GML, SVM-G and SP.

have small error deviance. In Figure 1(d) we plot (an estimate of) the average classifier error
deviance Es[le(f) —é(f)|] as a function of n for SP, GML and SVM-SM. The error deviance is
substantially smaller for the SP learning strategy. Such results are predicted by the performance
bounds established earlier in this paper where we produced favorable bounds on estimation error
as a by-product of favorable bounds on error deviance. This characteristic of the simple classifier
learning strategy means that we have higher confidence in our estimates of generalization value.

21



LANL Technical Report: LA-UR-03-0193 5 Experimental Results

More precisely it means that the true generalization value is known to fall within a smaller
range with higher confidence. This is particularly useful in applications where a large test set
is not available and it is important to have an accurate estimate of performance.

Results for the same set of experiments with the I-I distribution are illustrated in Figures
2(a)-2(d). The Bayes’ optimal decision boundary for this distribution is linear so we expect the
restrictions of linear classifiers to perform best. Indeed the plot in Figure 2(a) demonstrates
that the performances of the simple linear classes LPP and LCC are superior to the simple
spherical class SP. In this plot we also see a substantial difference in the generalization values
of the two different restrictions of linear classifiers LPP and LCC. Figure 2(b) illustrates how
the performance of the simple class SP, which is not particularly well suited to this data
distribution, is affected by the addition of a kernel and boosting. Incorporating a Gaussian
kernel does not make much difference, but boosting improves the performance substantially
and yields a performance that is superior to LPP. Figure 2(c) compares the simple classifier
learning strategies LPP and SP-GB to the alternative strategies GML and SVM-SM. The
parameters for the GML and SVM-SM learning strategies are the same as our first experiment.
Again we see that the SVM-SM, LPP and SP-GB strategies all perform very well compared to
GML. With this distribution however, the performance of SVM-SM surpasses that of simple
classes at smaller training set sizes. Even so the performance of SP-GB is competitive with
SVM-SM. These results again demonstrate that by a suitable choice of data dependency (e.g.
LPP) or by kernels and boosting (e.g. SP-GB) the simple classifier strategy is competitive with
powerful alternative methods. In Figure 2(d) we plot (an estimate of) the average classifier
error deviance Es||e(f) — é(f)|] as a function of n for LPP, GML and SVM-SM. Again we see
that the error deviance is substantially smaller for the simple class LPP.

We now turn to the experimental results for the Neyman—Pearson and min—max problems.
Much of what we have learned about simple classifiers from the experiments above carry over
to our experiments with the Neyman—Pearson and min-max problems, so we present only
the results comparing simple classifiers to alternative learning strategies. Also, since we know
of no boosting or SVM strategy for these problems we compare only simple classifiers (with
and without kernels) and GML. In addition, since the same two distributions are used in
these experiments the simple classes that perform well here tend to be the same ones that
performed well on the error minimization problem. Therefore in the experiments with the I—yI
distribution we present results for the SP and LPP-G simple classes and in the experiments with
the I-T distribution we present results for the LPP and SP-G simple classes 7. We start with the
Neyman-Pearson problem. For this experiment we set the class 1 error bound to o = 0.1 and
the accuracy parameter to e = 0.02 (for a review of these parameters see the Neyman-Pearson
learning strategy in (18)). Figure 3 presents the results for the I—yI distribution. Figures
3(a) and 3(b) plot the two components of the generalization value (Fg[eg(f)], Es[e1(f)]) as a
function of n for GML, SP and LPP-G. Except for the n = 100 case the class 1 errors for
the three strategies are similar, but the class 0 errors are significantly smaller for the simple
classifiers. To obtain a receiver operating curve (ROC) we set n = 500 and employed the
GML, SP and LPP-G learning strategies with values of a from 0 to 1 in increments of 0.05,
with e = 0.02 in each case. Figure 3(c) plots the corresponding sequence of two-tuples (class 1

"The SC and LCC classes perform extremely well on the I—yI and I-I distributions respectively, but they
are excluded in our comparisons because they exploit far more knowledge of the distributions than the other
methods.
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Figure 2: This figure summarizes the experimental results for the error minimization problem
with the I-T distribution. Figure 1(a) plots the generalization values for the simple
classes SP, LPP and LCC. Figure 1(b) plots the generalization values for SP, SP with
Gaussian kernel (SP-G) and SP with Gaussian kernel and 500 rounds of boosting (SP-
GB). Figure 1(c) plots the generalization values for GML, SVM-SM with Gaussian
kernel (SVM-G), LPP and SP-GB. In Figures 1(a)-1(c) the Bayes’ value of ¢* = 0.15
is shown as a dark dotted line. Figure 1(d) plots the error deviance Es[le(f) — é(f)]]

for GML, SVM-G and LPP.

error, class 0 detection rate)= (Eg[e1(f)],1— Es[eo(f)]) as an ROC. This plot shows that, with
n = 500 samples and class 1 errors in the range approximately 0.3 to 0.9, SP outperforms GML
which in turn is superior to LPP-G. Even though the GML performance curve is entirely above
the LPP-G performance curve there are a wide range of false alarm rates achieved by LPP-
G that cannot be achieved with GML. Figure 4 presents the results for the I-I distribution.
While Figure 4(a) shows that GML outperforms the simple classes LPP and SP-G in terms of
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class 0 error, Figure 4(b) shows just the opposite for class 1 error. The ROC plot in Figure
4(c) is qualitatively similar to that in Figure 3(c).
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Figure 3: Experimental results for the Neyman—Pearson problem with the [—yI distribution.
We compare GML, SP, and LPP-G. Figure 3(a) plots the class 0 errors and Figure
3(b) plots the class 1 errors verses training set size n. The Bayes’ values are shown
as a dark dotted line. Figure 3(c) plots the (false alarm rate, detection rate) =
(Eslei(f)], 1 — Esleo(f)]) for training sets of size n = 500 as the value of a (the
constraint on the class 1 empirical error) is varied from 0 to 1 in increments of 0.05.
0.7 T T T T 0.5 T T T T 1
-©- LPP -©- LPP
J/\ﬁ_/—e»/ 4~ SP-G [f - SP-G
-- GML - GML
0.6 1 0.4 0.8
=]
5 5 2
£o. o6t
[«5] 2
o 3
n (el
EO. %0.4’
O =
> O
03l P PO S UUUUS SOR NN SUPURSU SUUTORION 02k
-©- LPP
................................................. —# SP-G
- GML
02 : : ; : 0 : : : ; 0 : : : :
0 100 200 300 400 500 0 100 200 300 400 500 0 0.2 0.4 0.6 0.8
n Class 1 error

(a) Class 0 error comparison.

n

(b) Class 1 error comparison

Figure 4: Experimental results for the Neyman—Pearson problem with the I-I distribution.

We compare GML, LPP and SP-G. Figure 4(a) plots the class 0 errors and Figure
4(b) plots the class 1 errors verses training set size n. The Bayes’ values are shown
as a dark dotted line. Figure 4(c) plots the (false alarm rate, detection rate) =
(Eslei(f)], 1 — Esleo(f)]) for training sets of size n = 500 as the value of a (the
constraint on the class 1 empirical error) is varied from 0 to 1 in increments of 0.05.

(c) ROC Curve, n = 500

We now describe the experimental results for the min—max problem. Figure 5 presents the
results for the I—yI distribution. Figure 5(a) plots the generalization value as a function of
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n for GML, SP and LPP-G. The performance of both simple classifiers is significantly better
than GML. When a classifier designed with the min—-max strategy is employed in practice its
classification error depends on the value of the class marginal encountered in the real world
environment. This value is unknown and in some cases may change with time. Thus, a common
diagnostic for min—max is to plot the error Eg[e( 1, q)] for the entire range of possible values
of ¢ from 0 to 1. Figure 5(b) plots the error Es[e(f,q)] achieved by SP, LPP-G and GML
with training size n = 500 as the class marginal ¢ = P(y = 0) ranges from 0 to 1. Since
Esle(f,q)] = qEsleo(f)]+ (1 — q)Esle1(f)] these errors are linear functions of ¢. At the Bayes’
optimal eg = e; = 0.171 and the error is the same for all values of ¢. For most values of ¢ the
error for the simple classifiers is superior to that for GML. Perhaps more importantly, the higher
slope of the GML performance curve indicates that the GML solution lacks the robustness we
seek with the min—max approach. Figure 6 presents the results for the I-I distribution where
we compare GML, LPP and SP-G. These results show that GML is more competitive with the
simple classifiers on this distribution. Indeed Figure 6(b) shows that GML is comparable to
SP-G for small sample sizes and Figure 6(b) shows that the performance of GML falls between

SP-G and LPP at n = 500.
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Figure 5: Experimental results for the min—max problem with the I—y[I distribution. We com-
pare GML, SP and LPP-G. Figure 5(a) plots the generalization value verses training
set size n. The Bayes’ value is shown as a dark dotted line. Figure 5(b) plots the
error Eg [e(f, q)] for ¢ from 0 to 1 with training set size n = 500.

5.2 Real-World Data

This section describes experiments with three different real-world data sets. The first two are
the ionosphere and Pima Indian diabetes data sets from the UCI repository (Blake & Merz,
1998) and the third is an artificial nose data set collected at Tufts University (Dickinson,
White, Kauer, & Walt, 1996; White, Kauer, Dickinson, & Walt, 1996). The ionosphere data
set consists of n = 351 samples of radar signals, ng = 126 with label y = 0 that passed through
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Figure 6: Experimental results for the min—max problem with the I-I distribution. We compare
GML, LPP and SP-G. Figure 6(a) plots the generalization value verses training set
size n. The Bayes’ value is shown as a dark dotted line. Figure 6(b) plots the error
Es [e(f7 q)] for ¢ from 0 to 1 with training set size n = 500.

the ionosphere and n; = 225 with label y = 1 that did not pass through the ionosphere. Each
radar signal contains d = 34 real valued measurements. The Pima Indian data set consists of
n = 768 samples each containing d = 8 measurements. While it is often asserted that this data
set has no missing values, Ripley (1996) comments that this is not true. Only the first of the
8 measurements can realistically take a value of 0, but many of the samples have value 0 for
measurements 2 through 8. Ripley’s recommendation is to exclude the 5th measurement, which
is insulin level, because it has value 0 for so many of the samples. Then with the remaining
7 measurements he excludes samples which have value 0 for measurements 2 through 7. This
reduces the data set to n = 532 samples with d = 7 measurements each. This reduced data set
contains ng = 355 samples with label ¥ = 0 (no diabetes) and n; = 177 samples with y = 1
(diabetes). The third data set is taken from an artificial nose developed at Tufts University.
The nose consists of 19 optical fibers each of which has been coated on one end with a different
organic dye. The data consists of the change in emission fluorescence intensity over time for
each fiber. The change in intensity is measured at both the 620nm and 680nm wavelengths in
each fiber. A 20 second time interval is sampled at 60 equally spaced points for each wavelength
in each fiber. Hence each record consists of 38 observations each of which contains 60 samples,
so each data sample contains d = 2280 measurements. Data samples were collected by exposing
the fiber bundle to a 4 second pulse of a particular compound or mixture of compounds. The
data set contains ng = 760 samples where the mixture contained trichloroethylene (TCE) and
n1 = 352 samples where the mixture contained no TCE, for a total of n = 1112 samples.

In the real-world environment associated with these data sets there is an obvious role for a
two—class classifier, but the specific classifier design problem is not clear. In our first experiment
we treat all three as error minimization problems and therefore assume that the data are
gathered under the i.i.d. sample plan. This allows us to compare with generalization value
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estimates reported elsewhere. In truth however we do not know how the data were gathered
or whether error minimization is the appropriate design problem. In the artificial nose data
set roughly 68% of the samples contain TCE. Although we do not know the probability that
a sample will contain TCE, the value 0.68 seems unusually high and leads us to question the
assumed 7.7.d. sample plan. In contrast, the retrospective sample plan seems more plausible for
this data and under this sample plan the min-max design problem with unknown ¢ = P(y = 0)
seems more appropriate. Alternatively, it is not hard to imagine the TCE detector being used
in an environment where it is important to control the false alarm rate below some fixed
value, in which case the Neyman—Pearson design problem may be more appropriate. Thus,
in our second experiment we use the nose data to obtain solutions to both the min—-max and
Neyman-Pearson problems under the assumption that the data are gathered retrospectively.

In these experiments we compare estimates of the average error values of the learning
strategies. These estimates are obtained as follows. For each learning strategy the following is
repeated k = 100 times for the ionosphere and diabetes data and £ = 25 times for the nose data.
The data set is randomly partitioned into two subsets: a training set containing approximately
2/3 of the data and a test set containing the remaining 1/3. When i.i.d. sampling is assumed
the data set is partitioned as a whole using a random 2/3-1/3 split, and when retrospective
sampling is assumed the data for each class is partitioned separately using a random 2/3-1/3

~

split. The learning strategy is applied to the training set and an estimate of the errors e(f),
eo(f) and e (f) of the resulting classifier are computed using the test set. The estimated errors
are averaged over the k runs to obtain estimates of the average generalization error for the
error minimization and the Neyman—Pearson problem, and the average generalization error as

a function of ¢ for the min—max problem.

In our first experiment we compare learning strategies for the error minimization problem
for all three data sets. For the ionosphere data Breiman (1999) reports a generalization value
estimate of 5.5% for his random forest learning strategy. We implemented the same random
forest learning strategy using Breiman’s software and obtained an estimate of 6.6% with our
error estimation procedure. On the reduced Pima Indian data set Ripley (1996) obtained a
generalization value estimate of about 20% for the best classifier, and he performed a diagnostic
which he claims lower bounds the Bayes value for this problem at about 15%. Using the nose
data set Priebe (2001) reports an estimated generalization value of 12.5% for the best k-nearest-
neighbor strategy, and 4.5% for a generalized Wilcoxon-Mann-Whitney classifier.

We report results for the five simple classifier learning strategies along with GML, SVM-
SM and random forests (RF). For GML we used a regularization parameter v = 107%. For
support vector machines we used the SV M!"9" learning algorithm described in (Joachims,
1999) with default settings for the parameter values. All simple classifiers and support vector
machines were employed in both their basic form and with the quadratic kernel K (x1,x2) =
((xl, To) + 1)2. All simple classifiers with quadratic kernels were boosted 500 rounds using the
AdaBoost method in Freund and Shapire (1997). We used the random forest implementation
Forest-RI from Breiman (1999) with number of trees ¢ = 1000 and number of variables per
node F' = 4 for the ionosphere and diabetes data sets, and ¢t = 500 and F' = 20 for the nose
data. The results are shown in Table 2.

As a general rule the simple linear classes performed better than the simple spherical classes
(with no kernels or boosting). Indeed, the SC class does not perform well on any of the
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H Tonosphere ‘ Diabetes ‘ Tuft’s Nose
LPP 19.0/11.4/6.50 | 23.7/24.0/26.7 | 16.6/16.5/9.8
LPC 19.6/16.6/8.60 | 24.1/23.2/26.2 | 16.9/18.7/13.6
LCC 18.8/14.9/17.7 | 22.9/22.6 /24.4 | 20.8/20.0/21.7

SP 26.8/28.3/8.09 | 24.5/24.1/26.3 | 18.2/20.6/15.1
SC 26.6/24.8/29.4 | 33.1/32.5/33.9 | 32.5/32.5/33.0
SVM-SM 13.0/9.1 22.8/22.7 16.8/16.9
GML 12.5 23.9 -
RF 6.60 23.2 10.1

Table 2: Estimates of the average generalization value for LPP, LPC, LCC, SP, SC, Gaussian
maximum likelihood (GML), support vector machines (SVM-SM) and random forests
(RF). The simple classes have three entries A/B/C where A is the value for the basic

class, B is the value for the class with quadratic kernel K (z1,22) = ((z1,22) + 1)2 and
C is the value for the class with quadratic kernel and 500 rounds of boosting (except
for the LPP class with the Tuft’s nose data where 250 rounds of boosting are used).
The reported results are for the final round of boosting. The best of the three entries
A/B/C is shown in bold italic font. The SVM-SM has two entries A/B where A is
the linear support vector machine and B is the support vector machine with quadratic
kernel. Again, the best of the two entries A/B is shown in bold italic font. No result
is provided for GML on the Tuft’s nose data because the dimension of the data is too
high to obtain meaningful results with this method.

three data sets. In most cases the incorporation of kernels and/or boosting lead to improved
performance for the simple classes, except for the diabetes data where almost all the methods
perform similarly. Many of the boosted simple classifiers perform very well compared to SVM-
SM and GML. In addition there is always at least one simple class (with kernels or boosting)
whose performance is comparable to the best overall. The best performances across the two
most challenging data sets, Ionosphere and nose, are provided by LPP with boosting and RF.

It is instructive to consider what can be achieved with the nose data by the the restricted
class LPP compared to traditional linear classifiers. It is no surprise that this data set of 1112
samples in 2280 dimensions is linearly separable. Nearly all training algorithms for traditional
linear classifiers are designed to produce a separating solution when one exists. Of all the linear
classifiers that separate the data the SVM-SM solution is generally considered among the best.
On the other hand the LPP solution, which does not separate the data, provides almost identical
performance. The LPP strategy has the additional benefit that it has a lower error deviance
which means that estimates of its performance are more accurate. The nonseparability of the
LPP solution also means that boosting can be employed to improve performance, which is not
true for traditional linear classifier learning strategies that produce separating solutions ®. This
is significant in the nose data because boosting LPP leads to a performance that is significantly
better than SVM-SM.

8Boosting effectively terminates on the first round when the base classifier achieves zero training error.
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In our next experiment we obtain solutions to the Neyman—Pearson and min—-max problems
using the nose data. The dimension d = 2280 of this data is too high to obtain meaningful
results with the GML method. Further, since we know of no boosting strategy for the Neyman—
Pearson or min—-max problems, and the results in Table 2 suggest that LPP without a kernel
will work well, we employ only the basic LPP class.

We start with the Neyman-Pearson problem. To obtain a receiver operating curve (ROC)
we employed the Neyman—Pearson learning strategy varying « from 0 to 1 in increments of
0.05, with ¢ = 0.002 in each case. Figure 7 plots the corresponding sequence of two-tuples
(class 1 error, class 0 detection rate)= (Egle1(f)],1 — Esleo(f)]) as an ROC. The detection
rate starts to decrease rapidly when the false alarm rate falls below 0.4, and even more rapidly
when it falls below 0.2. The % symbol in Figure 7 represents the average operating point for
classifiers designed to solve the error minimization problem treated earlier. The detection rate
for this operating point is above 90%, but the false alarm rate is nearly 40%. Although we do
not know the application well it seems plausible that a false alarm rate of 40% is unacceptable.
In contrast, employing the Neyman—Pearson learning strategy allows one to operate at a point
on the ROC curve which has a reduced false alarm rate.

1
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Figure 7: The ROC curve for the Neyman—Pearson learning strategy applied to the nose data
with the LPP class. The plot shows the false alarm rate Eg[e; (f)] verses the detection
rate 1 — Es[eo(f)] as a is varied from 0 to 1 in increments of 0.05 (with €;/2 = 0.001
in each case). The x symbol represents the average operating point for classifiers
designed to solve the error minimization problem.

The results for the min—-max problem are illustrated in Figure 8 which shows three curves.
The curve labeled MM is the average generalization error Esle(f,q)] as a function of ¢ for
the min—max learning strategy. To investigate the price we pay for not knowing g we perform
the following experiment. We assume ¢ = P(y = 0) is known and employ an empirical error
minimization learning strategy with LPP on the retrospectively sampled data weighted to
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simulate the marginal ¢. In particular we set the weights to wy (i) = gn/ng for samples with
Yn(i) = 0 and to wy (i) = (1 — ¢)n/ny for samples with y, (i) = 1. The curve labeled EMQ is
(an estimate of) the average generalization error achieved by this strategy ?. The gap between
the MM and EMQ curves represents the difference in performance due to lack of knowledge of
q. Since the min—max classifier is designed to perform well for the worst case value of ¢ it is
no surprise that the gap between the MM and EMQ curves is larger near the best case values
of ¢ which occur at the extremes.

Now suppose that an incorrect value of the marginal is assumed and we employ the error
minimization strategy above. In particular suppose the restrospectively sampled data is incor-
rectly assumed to be i.i.d. from the joint distribution and we employ the error minimization
strategy. If ¢ actually turns out to be ng/n = 0.68 (as it is in the nose data) then the average
generalization error for this approach is approximately 16.6%. We plot this value at ¢ = 0.68
using the symbol * in Figure 8. The performance of the min-max learning strategy (the MM
curve) is nearly constant over ¢ and its error is approximately 5% higher than this value 16.6%.
On the other hand the average generalization error Egle(f,q)] for classifiers designed using
the error minimization learning strategy is illustrated by the curve labeled EM. When g is
less than approximately 0.53 the average performance of classifiers designed using the error
minimization learning strategy is worse than the average performance of classifiers designed
using the min—max learning strategy. The reverse is true when ¢ is greater than 0.53. In this
problem we do not know the probability that a sample will contain TCE, but it seems likely
that it is much less than 0.53 in which case the performance of the min—max solution will be
much better than the error minimization solution.

References

Blake, C., & Merz, C. (1998). UCI repository of machine learning databases.
http://www.ics.uci.edu/~mlearn/MLRepository.html: University of California, Irvine,
Dept. of Information and Computer Sciences.

Bousquet, O., & Elisseeff, A. (2002). Stability and generalization. Journal of Machine Learning
Research, 2, 499-526.

Breiman, L. (1999). Random forests (Technical Report No. 567). Berkeley, CA: University of
California - Berkeley.

Campbell, C., & Cristianini, N. (1999). Simple training algorithms for support vector ma-
chines (Technical Report CIG-TR-KA). University of Bristol, Engineering Mathematics,
Computational Intelligence Group.

Cannon, A., Ettinger, M., Hush, D., & Scovel, C. (2002a). Machine learning with data
dependent hypothesis classes. Journal of Machine Learning Research, 2, 335—358.

Cannon, A., Howse, J., Hush, D., & Scovel, C. (2002D). Learning with the
Neyman-Pearson and min-maz criteria (Los Alamos Technical Report Nos. LA-

°To obtain these estimates we use the same cross validation procedure described earlier for estimating the
average generalization error when the data is gathered under the retrospective sample plan.

30



LANL Technical Report: LA-UR-03-0193 REFERENCES

03 ‘ ‘ T
h = MM
— EMQ
. -- EM
0.25¢ B .
N \\\
o
t 0.2+ AN 3
[CIln M
= \
2
=0.15F 1
B N
g o
= .
g 0.1 S8
[} AN
O S
0.05f .
0 . . . .
0 0.2 0.4 06 058 1
q

Figure 8: Results for the min-max experiments applied to the nose data with the LPP class.
The MM curve shows the average generalization error Egle(f,q)] verses ¢ = P(y = 0)
for the min—max learning strategy. The EMQ curve shows the average generalization
error achieved by an empirical error minimization learning strategy that knows the
value of q. The % symbol is the average generalization error for classifiers designed
using the error minimization learning strategy when ¢ = 0.68. The EM curve is the
average generalization error Egle(f, ¢)] as a function of ¢ for classifiers designed using
the error minimization learning strategy when ng/n = 0.68.

UR-02-2951). Los Alamos National Laboratory. (submitted for publication,
http://wwwc3.lanl.gov/ml/pubs_select.shtml)

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20, 273-297.

Cristianini, N., & Shawe-Taylor, J. (2000). An introduction to support vector machines and
other kernel-based learning methods (1st ed.). Cambridge ; United Kingdom: Cambridge
University Press.

Devroye, L., Gyorfi, L., & Lugosi, G. (1996). A probabilistic theory of pattern recognition. New
York, NY: Springer.

Dickinson, T., White, J., Kauer, J., & Walt, D. (1996). A chemical-detecting system based on
a cross-reactive optical sensor array. Nature, 382, 697-700.

Freund, Y., & Shapire, R. (1997). A decision-theoretic generalization of on-line learning and
an application to boosting. Journal of Computer and System Sciences, 55(1), 119-139.

Fukunaga, K. (1990). Introduction to statistical pattern recognition (2nd ed.). San Diego, CA:
Academic Press.

Huber, P. (1981). Robust statistics. New York: John Wiley & Sons, Inc.

Hush, D., & Scovel, C. (2003). Polynomial-time decomposition algorithms for support vector
machines. Machine Learning, 51, 51-T71.

31



LANL Technical Report: LA-UR-03-0193 REFERENCES

Joachims, T. (1999). Making large-scale SVM learning practical. In B. Schlkopf, C. Burges,
& A. Smola (Eds.), Advances in kernel methods - support vector learning. MIT Press.

Priebe, C. (2001). Olfactory classification via interpoint distance analysis. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 23(4), 404-413.

Ripley, B. (1996). Pattern recognition and neural networks. Cambridge, UK: Cambridge
University Press.

Schapire, R., Freund, Y., Bartlett, P., & Lee, W. S. (1998). Boosting the margin: A new
explanation for the effectiveness of voting methods. The Annals of Statistics, 26(5),
1651-1686.

Van-Trees, H. (1968). Detection, estimation and modulation theory: Part 1. New York, NY:
John Wiley & Sons, Inc.

Vapnik, V. N. (1998). Statistical learning theory. New York NY: John Wiley & Sons, Inc.

Vapnik, V. N.; & Chervonenkis, A. (1974). Theory of pattern recognition. Moscow: Nauka.
((in Russian))

White, J., Kauer, J., Dickinson, T., & Walt, D. (1996). Rapid analyte recognition in a device
based on optical sensors and the olfactory system. Analytical Chemistry, 68, 2191-2202.

Williams, C. K. I., & Seeger, M. (2001). Using the Nystrom method to speed up kernel
machines. In T. K. Leen, T. G. Dietterich, & V. Tresp (Eds.), Advances in neural
information processing systems 13 (pp. 682-688). MIT Press.

32



